Statistical Parsing for CCG with Simple Generative Models
نویسنده
چکیده
This paper presents a statistical parser for a wide-coverage Combinatory Categorial Grammar (CCG) derived from the Penn Treebank. The Treebank is translated to a corpus of canonical CCG derivations. We de ne a generative statistical model over CCG derivations and train it on the transformed Treebank. This model is evaluated using Parseval measures and the accuracy of recovery of word-word dependencies. The impact of lexical coverage on parsing accuracy is also investigated.
منابع مشابه
Generative Models for Statistical Parsing with Combinatory Categorial Grammar
This paper compares a number of generative probability models for a widecoverage Combinatory Categorial Grammar (CCG) parser. These models are trained and tested on a corpus obtained by translating the Penn Treebank trees into CCG normal-form derivations. According to an evaluation of unlabeled word-word dependencies, our best model achieves a performance of 89.9%, comparable to the figures giv...
متن کاملData and Models for Statistical Parsing with Combinatory Categorial Grammar
This dissertation is concerned with the creation of training data and the development of probability models for statistical parsing of English with Combinatory Categorial Grammar (CCG). Parsing, or syntactic analysis, is a prerequisite for semantic interpretation, and forms therefore an integral part of any system which requires natural language understanding. Since almost all naturally occurri...
متن کاملParsing with Generative Models of Predicate-Argument Structure
The model used by the CCG parser of Hockenmaier and Steedman (2002b) would fail to capture the correct bilexical dependencies in a language with freer word order, such as Dutch. This paper argues that probabilistic parsers should therefore model the dependencies in the predicate-argument structure, as in the model of Clark et al. (2002), and defines a generative model for CCG derivations that c...
متن کاملExplorer A * CCG Parsing with a Supertag - factored Model
We introduce a new CCG parsing model which is factored on lexical category assignments. Parsing is then simply a deterministic search for the most probable category sequence that supports a CCG derivation. The parser is extremely simple, with a tiny feature set, no POS tagger, and no statistical model of the derivation or dependencies. Formulating the model in this way allows a highly effective...
متن کامل